Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.219
Filtrar
2.
Mol Biol Rep ; 51(1): 559, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643306

RESUMO

BACKGROUND: Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS: The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS: Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.


Assuntos
Ácidos Cafeicos , Leucemia Mieloide Aguda , Álcool Feniletílico/análogos & derivados , Própole , Humanos , Própole/farmacologia , Azeite de Oliva , Metilprednisolona/farmacologia , Apoptose
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621986

RESUMO

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Assuntos
Ácidos Cafeicos , Ácidos Cumáricos , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Ácido Oleanólico , Ratos , Animais , Ratos Sprague-Dawley , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/farmacocinética
4.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611749

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, with a high degree of malignancy and poor prognosis. Tumor-associated macrophages (TAMs) have been identified as significant contributors to the growth and metastasis of TNBC through the secretion of various growth factors and chemokines. Salvianolic acid A (SAA) has been shown to have anti-cancer activities. However, the potential activity of SAA on re-polarized TAMs remains unclear. As there is a correlation between the TAMs and TNBC, this study investigates the effect of SAA on TAMs in the TNBC microenvironment. For that purpose, M2 TAM polarization was induced by two kinds of TNBC-conditioned medium (TNBC-TCM) in the absence or presence of SAA. The gene and protein expression of TAM markers were analyzed by qPCR, FCM, IF, ELISA, and Western blot. The protein expression levels of ERK and p-ERK in M2-like TAMs were analyzed by Western blot. The migration and invasion properties of M2-like TAMs were analyzed by Transwell assays. Here, we demonstrated that SAA increased the expression levels of CD86, IL-1ß, and iNOS in M2-like TAMs and, conversely, decreased the expression levels of Arg-1 and CD206. Moreover, SAA inhibited the migration and invasion properties of M2-like TAMs effectively and decreased the protein expression of TGF-ß1 and p-ERK in a concentration-dependent manner, as well as TGF-ß1 gene expression and secretion. Our current findings for the first time demonstrated that SAA inhibits macrophage polarization to M2-like TAMs by inhibiting the ERK pathway and promotes M2-like TAM re-polarization to the M1 TAMs, which may exert its anti-tumor effect by regulating M1/M2 TAM polarization. These findings highlight SAA as a potential regulator of M2 TAMs and the possibility of utilizing SAA to reprogram M2 TAMs offers promising insights for the clinical management of TNBC.


Assuntos
Ácidos Cafeicos , Lactatos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Fator de Crescimento Transformador beta1 , Microambiente Tumoral , Macrófagos Associados a Tumor
5.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611904

RESUMO

In recent years, caffeic acid and its derivatives have received increasing attention due to their obvious physiological activities and wide distribution in nature. In this paper, to clarify the status of research on plant-derived caffeic acid and its derivatives, nuclear magnetic resonance spectroscopy data and possible biosynthetic pathways of these compounds were collected from scientific databases (SciFinder, PubMed and China Knowledge). According to different types of substituents, 17 caffeic acid and its derivatives can be divided into the following classes: caffeoyl ester derivatives, caffeyltartaric acid, caffeic acid amide derivatives, caffeoyl shikimic acid, caffeoyl quinic acid, caffeoyl danshens and caffeoyl glycoside. Generalization of their 13C-NMR and 1H-NMR data revealed that acylation with caffeic acid to form esters involves acylation shifts, which increase the chemical shift values of the corresponding carbons and decrease the chemical shift values of the corresponding carbons of caffeoyl. Once the hydroxyl group is ester, the hydrogen signal connected to the same carbon shifts to the low field (1.1~1.6). The biosynthetic pathways were summarized, and it was found that caffeic acid and its derivatives are first synthesized in plants through the shikimic acid pathway, in which phenylalanine is deaminated to cinnamic acid and then transformed into caffeic acid and its derivatives. The purpose of this review is to provide a reference for further research on the rapid structural identification and biofabrication of caffeic acid and its derivatives.


Assuntos
Vias Biossintéticas , Ácidos Cafeicos , Ácido Chiquímico , Carbono , Ésteres , Espectroscopia de Ressonância Magnética
6.
Mikrochim Acta ; 191(5): 265, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625451

RESUMO

Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 µM, and the limit of detection (LOD) was ~ 0.13 µM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.


Assuntos
Encéfalo , Ácidos Cafeicos , Polietilenos , Polipropilenos , Privação do Sono , Animais , Camundongos , Complexo de Golgi , Suplementos Nutricionais
7.
Int J Nanomedicine ; 19: 3405-3421, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617795

RESUMO

Background: Natural nanoparticles have been found to exist in traditional Chinese medicine (TCM) decoctions. However, whether natural nanoparticles can influence the oral bioavailability of active compounds has not been elucidated. Using Xie-Bai-San decoction (XBSD) as an example, the purpose of this study was to isolate, characterize and elucidate the mechanism of the nanoparticles (N-XBSD) in XBSD, and further to explore whether the bioavailability of the main active compounds could be enhanced by N-XBSD. Methods: N-XBSD were isolated from XBSD, and investigated its characterization and study of its formation mechanism, and evaluation of its ability to enhance bioavailability of active compounds. Results: The N-XBSD was successfully isolated with the average particle size of 104.53 nm, PDI of 0.27 and zeta potential of -5.14 mV. Meanwhile, all the eight active compounds were most presented in N-XBSD. Kukoamine B could self-assemble with mulberroside A or liquiritin to form nanoparticles, respectively. And the FT-IR and HRMS results indicated the possible binding of the ammonium group of kukoamine B with the phenolic hydroxyl group of mulberroside A or liquiritin, respectively. The established UPLC-MS/MS method was accurate and reliable and met the quantitative requirements. The pharmacokinetic behaviors of the N-XBSD and decoction were similar in rats. Most notably, compared to that of free drugs, the Cmax, AUC0-∞, AUC0-t, T1/2 and MRT0-∞ values of index compounds were the higher in N-XBSD, with a slower plasma clearance rate in rats. Conclusion: The major active compounds of XBSD were mainly distributed in N-XBSD, and N-XBSD was formed through self-assembly among active compounds. N-XBSD could obviously promote the bioavailability of active compounds, indicating natural nanoparticles of decoctions play an important role in therapeutic effects.


Assuntos
Ácidos Cafeicos , Dissacarídeos , Nanopartículas , Espermina/análogos & derivados , Estilbenos , Espectrometria de Massas em Tandem , Animais , Ratos , Disponibilidade Biológica , Cromatografia Líquida , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Rep ; 14(1): 6693, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509159

RESUMO

Coleus scutellarioides (L.) Benh. is a popular species in the world, known for its characteristic magnificent colourful leaves. The study has revealed that the contents of rosmarinic acid and caffeic acid are significantly higher in the plant tissues cultivated in vivo than when under in vitro conditions. The performed qualitative and quantitative analyses confirmed the presence (whose averaged content) of salvinorin A (6.65 µg/1 g of fresh plant) and salvinorin B (50.46 µg/1 g of fresh plant) in tissues of Coleus scutellarioides (L.) Benh. of 'Electric lime' variety. The greatest quantities of these compounds were recorded for plants cultivated in vitro on the MS medium enriched with NAA (naphthyl-1-acetic acid) at a concentration of 0.5 mg∙ dm-3. The research detected differences in the amounts of compounds between plants grown in vivo and those cultivated in vitro. Addition of plant growth regulators into the breeding medium under in vitro conditions was found affecting the amounts of compounds in plant tissues.


Assuntos
Ácidos Cafeicos , Coleus , Diterpenos Clerodânicos , Plectranthus , 60556 , Melhoramento Vegetal , Reguladores de Crescimento de Plantas
9.
Drug Des Devel Ther ; 18: 767-780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495631

RESUMO

Purpose: Pulmonary arterial hypertension (PAH) is a devastating disease with little effective treatment. The proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by the nuclear factor-κB (NF-κB) signaling activation plays a pivotal role in the pathogenesis of PAH. Forsythoside B (FTS•B) possesses inhibitory effect on NF-κB signaling pathway. The present study aims to explore the effects and mechanisms of FTS•B in PAH. Methods: Sprague-Dawley rats received monocrotaline (MCT) intraperitoneal injection to establish PAH model, and FTS•B was co-treated after MCT injection. Right ventricular hypertrophy and pulmonary artery pressure were measured by echocardiography and right heart catheterization, respectively. Histological alterations were detected by H&E staining and immunohistochemistry. FTS•B's role in PASMC proliferation and migration were evaluated by CCK-8 and wound healing assay. To investigate the underlying mechanisms, Western blotting, immunofluorescence staining and ELISA were conducted. The NF-κB activator PMA was used to investigate the role of NF-κB in FTS•B's protective effects against PAH. Results: FTS•B markedly alleviated MCT-induced vascular remodeling and pulmonary artery pressure, and improved right ventricular hypertrophy and survival. FTS•B also reversed PDGF-BB-induced PASMC proliferation and migration, decreased PCNA and CyclinD1 expression in vitro. The elevated levels of IL-1ß and IL-6 caused by MCT were decreased by FTS•B. Mechanistically, MCT-triggered phosphorylation of p65, IκBα, IKKα and IKKß was blunted by FTS•B. FTS•B also reversed MCT-induced nuclear translocation of p65. However, all these protective effects were blocked by PMA-mediated NF-κB activation. Conclusion: FTS•B effectively attenuates PAH by suppressing the NF-κB signaling pathway to attenuate vascular remodeling. FTS•B might be a promising drug candidate with clinical translational potential for the treatment of PAH.


Assuntos
Ácidos Cafeicos , Glucosídeos , Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Animais , NF-kappa B/metabolismo , Monocrotalina/efeitos adversos , Ratos Sprague-Dawley , Remodelação Vascular , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Transdução de Sinais
10.
J Agric Food Chem ; 72(12): 6276-6288, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38485738

RESUMO

Polyphenols have shown great potential to prevent ulcerative colitis. As a natural plant polyphenol, chicoric acid (CA) has antioxidant and anti-inflammatory properties. This study explored the intervention effects and potential mechanism of CA on dextran sodium sulfate (DSS)-induced colitis mice. The results showed that CA alleviated the symptoms of colitis and maintained the intestinal barrier integrity. CA significantly downregulated the mRNA expression levels of inflammatory factors including IL-6, IL-1ß, TNF-α, IFN-γ, COX-2, and iNOS. In addition, CA modulated the gut microbiota by improving the microbial diversity, reducing the abundance of Gammaproteobacteriaand Clostridium_XI and increasing the abundance ofBarnesiellaandLachnospiraceae. Further fecal microbiota transplantation experiments showed that FM from CA donor mice significantly alleviated the symptoms of colitis, verifying the key role of gut microbiota. These results indicate that CA effectively relieves DSS-induced colitis via targeting gut microbiota along with preserving intestinal barrier function and suppressing inflammatory responses.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Succinatos , Animais , Camundongos , Intestinos , Ácidos Cafeicos , Polifenóis , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo
11.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543018

RESUMO

Que Zui tea (QT) is an important herbal tea in the diet of the 'Yi' people, an ethnic group in China, and it has shown significant antioxidant, anti-inflammatory, and hepatoprotective effects in vitro. This study aims to explore the protective effects of the aqueous-ethanol extract (QE) taken from QT against ᴅ-galactose (ᴅ-gal)-induced oxidative stress damage in mice and its potential mechanisms. QE was identified as UHPLC-HRMS/MS for its chemical composition and possible bioactive substances. Thus, QE is rich in phenolic and flavonoid compounds. Twelve compounds were identified, the main components of which were chlorogenic acid, quinic acid, and 6'-O-caffeoylarbutin. Histopathological and biochemical analysis revealed that QE significantly alleviated brain, liver, and kidney damage in ᴅ-gal-treated mice. Moreover, QE remarkably attenuated oxidative stress by activating the Nrf2/HO-1 pathway to increase the expression of antioxidant indexes, including GSH, GSH-Px, CAT, SOD, and T-AOC. In addition, QE administration could inhibit the IL-1ß and IL-6 levels, which suppress the inflammatory response. QE could noticeably alleviate apoptosis by inhibiting the expressions of Caspase-3 and Bax proteins in the brains, livers, and kidneys of mice. The anti-apoptosis mechanism may be related to the upregulation of the SIRT1 protein and the downregulation of the p53 protein induced by QE in the brain, liver, and kidney tissues of mice. Molecular docking analysis demonstrated that the main components of QE, 6'-O-caffeoylarbutin, chlorogenic acid, quinic acid, and robustaside A, had good binding ability with Nrf2 and SIRT1 proteins. The present study indicated that QE could alleviate ᴅ-gal-induced brain, liver and kidney damage in mice by inhibiting the oxidative stress and cell apoptosis; additionally, the potential mechanism may be associated with the SIRT1/Nrf2 signaling pathway.


Assuntos
Antioxidantes , Arbutina/análogos & derivados , Ácidos Cafeicos , Galactose , Humanos , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galactose/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Ácido Clorogênico/farmacologia , Simulação de Acoplamento Molecular , Ácido Quínico/farmacologia , Estresse Oxidativo , Transdução de Sinais , Chá
12.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542381

RESUMO

Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. The accumulation of amyloid-beta (Aß) plaques is a distinctive pathological feature of AD patients. The aims of this study were to evaluate the therapeutic effect of chicoric acid (CA) on AD models and to explore its underlying mechanisms. APPswe/Ind SH-SY5Y cells and 5xFAD mice were treated with CA. Soluble Aß1-42 and Aß plaque levels were analyzed by ELISA and immunohistochemistry, respectively. Transcriptome sequencing was used to compare the changes in hippocampal gene expression profiles among the 5xFAD mouse groups. The specific gene expression levels were quantified by qRT-PCR and Western blot analysis. It was found that CA treatment reduced the Aß1-42 levels in the APPswe/Ind cells and 5xFAD mice. It also reduced the Aß plaque levels as well as the APP and BACE1 levels. Transcriptome analysis showed that CA affected the synaptic-plasticity-related genes in the 5xFAD mice. The levels of L1CAM, PSD-95 and synaptophysin were increased in the APPswe/Ind SH-SY5Y cells and 5xFAD mice treated with CA, which could be inhibited by administering siRNA-L1CAM to the CA-treated APPswe/Ind SH-SY5Y cells. In summary, CA reduced Aß levels and increased the expression levels of synaptic-function-related markers via L1CAM in AD models.


Assuntos
Doença de Alzheimer , Ácidos Cafeicos , Molécula L1 de Adesão de Célula Nervosa , Neuroblastoma , Doenças Neurodegenerativas , Succinatos , Humanos , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Ácido Aspártico Endopeptidases/metabolismo , Peptídeos beta-Amiloides/metabolismo
13.
Bioresour Technol ; 399: 130599, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493938

RESUMO

This study established a Candida rugosa lipase (CRL) system to catalyze triolein and ethyl ferulate interesterification. The products were identified, and the binding mode between the substrates and CRL was predicted through molecular docking. Three methods for preparing CRL-AuNPs were proposed and characterized. It was found that the addition of 40 mL of 15 nm gold nanoparticles increased the CRL activity from 3.05 U/mg to 4.75 U/mg, but the hybridization efficiency was only 32.7 %. By using 4 mL of 0.1 mg/mL chloroauric acid, the hybridization efficiency was improved to 50.7 %, but the enzyme activity was sharply decreased. However, when the molar ratio of Mb to HAuCl4 was 0.2, the hybridization efficiency increased to 71.8 %, and the CRL activity was also enhanced to 5.98 U/mg. Under optimal conditions, the enzyme activity of CRL-AuNPs③ was maintained at 95 % after 6 repetitions and 85.6 % after 30 days at room temperature.


Assuntos
Ácidos Cafeicos , Lipase , Nanopartículas Metálicas , Saccharomycetales , Lipase/metabolismo , Ouro , Enzimas Imobilizadas/metabolismo , Trioleína , Simulação de Acoplamento Molecular , Candida/metabolismo , Estabilidade Enzimática
14.
Antiviral Res ; 225: 105868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490343

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.


Assuntos
Ácidos Cafeicos , Álcool Feniletílico/análogos & derivados , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Drogas Veterinárias , Suínos , Animais , Estudos Prospectivos , Drogas Veterinárias/farmacologia , Replicação Viral , Antivirais/farmacologia
15.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528569

RESUMO

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Assuntos
Ácidos Cafeicos , Doenças Mitocondriais , Álcool Feniletílico , Traumatismos da Medula Espinal , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metilprednisolona/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Álcool Feniletílico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Dinaminas/efeitos dos fármacos
16.
Chem Biol Drug Des ; 103(3): e14496, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38444006

RESUMO

Chitooligosaccharide (COS) is a derivative of chitosan, which is a natural macromolecular compound. COS has been shown effects in an inflammatory response. Recent reports show that COS derivatives have enhanced anti-inflammatory activity by inhibiting intracellular signals. Evaluation of the anti-inflammatory effect of caffeic acid conjugated COS chain (CA-COS) was performed in this study. The effects of CA-COS on the inflammatory response were demonstrated in lipopolysaccharide-stimulated RAW264.7 macrophages. The results showed that CA-COS inhibited nitric oxide (NO) production and downregulated the gene expression of nitric oxide synthase (iNOS), and cytokines such as tumor necrosis factor-alpha (TNF-α), IL-1ß, and IL-6 without cytotoxic effect. In addition, western blot analysis showed that CA-COS inhibits the protein expression of iNOS and nuclear factor kappa B (NF-kB), including p50 and p65, and mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these results provide clear evidence for the anti-inflammatory mechanism of CA-COS that show great potential as a novel agent for the prevention and therapy of inflammatory diseases.


Assuntos
Ácidos Cafeicos , Quitosana , Proteínas Quinases Ativadas por Mitógeno , NF-kappa B , Oligossacarídeos , Quitina/farmacologia , Anti-Inflamatórios/farmacologia
17.
Chem Biol Interact ; 392: 110953, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471628

RESUMO

Kawasaki disease (KD), an acute exanthematous febrile pediatric illness involving systemic non-specific inflammatory reactions in small- and medium-sized arteries, poses a significant risk of coronary artery and myocardial inflammatory injury. Developing new KD treatments with improved safety and fewer side-effects is highly desirable. Forsythoside B (FTS-B), extracted from the Forsythia suspensa plant, exerts anti-inflammatory activity by inhibiting NF-κB, which is regulated by SIRT1, the reduced expression of which is strongly associated with cardiovascular disease. However, it has yet to be established whether FTS-B influences KD-related inflammatory damage. In this study, we investigated the effects of FTS-B on inflammation in cellular and murine models of KD. Our findings revealed that KD is associated with cardiac dysfunction and inflammatory injury to myocardial and human coronary artery endothelial cells (HCAECs), resulting in a pyroptosis-feedback loop. Both cellular and KD models were characterized by reduced SIRT1 expression and increased NF-κB p65 expression. Contrastingly, the rates of pyroptosis in both murine model myocardial tissues and HCAECs were significantly alleviated in response to FTS-B treatment. Also in both models, we detected an increase of SIRT1 expression and a decrease in the expression of p65. Further examination of the protective mechanism of FTS-B using the SIRT1-specific inhibitor, EX 527, revealed that this inhibitor blocked the palliative effects of FTS-B on inflammatory injury-induced pyroptosis. These results highlight the potential utility of the SIRT1-NF-κB-p65 pathway as a therapeutic target for KD treatment and demonstrate that FTS-B can alleviate KD-induced cardiac and HCAEC inflammatory injury via inhibition of pyroptosis.


Assuntos
Ácidos Cafeicos , Glucosídeos , Síndrome de Linfonodos Mucocutâneos , NF-kappa B , Humanos , Camundongos , Animais , Criança , NF-kappa B/metabolismo , Síndrome de Linfonodos Mucocutâneos/complicações , Síndrome de Linfonodos Mucocutâneos/tratamento farmacológico , Síndrome de Linfonodos Mucocutâneos/metabolismo , Piroptose , Células Endoteliais/metabolismo , Sirtuína 1/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico
18.
Planta ; 259(5): 102, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549005

RESUMO

MAIN CONCLUSION: Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as ß-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration. The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or ß-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with ß-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of ß-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).


Assuntos
Ácidos Cafeicos , Cimicifuga , Fenilacetatos , Ácidos Fenilpirúvicos , Piruvatos , Cimicifuga/química , Ácido Pirúvico , Oxirredutases , Escherichia coli/genética , Extratos Vegetais
19.
Clin Exp Hypertens ; 46(1): 2326021, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38525833

RESUMO

PURPOSE: This study aimed to examine the impact of CA on DN and elucidate its underlying molecular mechanisms of inflammation. METHODS: We fed C57BL/6 mice injected with streptozotocin to induce diabetes. In addition, we stimulated NRK-52E cells with 20 mmol/L d-glucose to mimic the diabetic condition. RESULTS: Our findings demonstrated that CA effectively reduced blood glucose levels, and improved DN in mice models. Additionally, CA reduced kidney injury and inflammation in both mice models and in vitro models. CA decreased high glucose-induced ferroptosis of NRK-52E cells by inducing GSH/GPX4 axis. Conversely, the ferroptosis activator or the PI3K inhibitor reversed positive effects of CA on DN in both mice and in vitro models. CA suppressed PAQR3 expression in DN models to promote PI3K/AKT activity. The PAQR3 activator reduced the positive effects of CA on DN in vitro models. Moreover, CA directly targeted the PAQR3 protein to enhance the ubiquitination of the PAQR3 protein. CONCLUSION: Overall, our study has uncovered that CA promotes the ubiquitination of PAQR3, leading to the attenuation of ferroptosis in DN. This effect is achieved through the activation of the PI3K/AKT signaling pathways by disrupting the interaction between PAQR3 and the P110α pathway. These findings highlight the potential of CA as a viable therapeutic option for the prevention of DN and other forms of diabetes.


Assuntos
Ácidos Cafeicos , Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Succinatos , Animais , Camundongos , Nefropatias Diabéticas/tratamento farmacológico , Inflamação , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinação
20.
Ecotoxicol Environ Saf ; 274: 116209, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492482

RESUMO

Macrophytes are crucial in maintaining the equilibrium of aquatic ecosystems. However, the pattern of macrophyte-derived caffeic acid (CA) release under heavy metal stress is yet to be fully understood. More importantly, due to its functional groups, CA may be a precursor to the formation of disinfection by-products, posing threats to water ecology and even safety of human drinking water. This study analyzed the responses of CA released by Vallisneria natans (V. natans) and Pistia stratiotes (P. Stratiotes) when exposed to Cu2+ and Mn2+ stress. Additionally, the CA levels in two constructed wetland ponds were detected and the degradation kinetics of CA during chlorination were investigated. Results indicated that CA occurred in two constructed wetland ponds with the concentrations of 44.727 µg/L (planted with V. natans) and 61.607 µg/L (planted with P. Stratiotes). Notably, heavy metal stress could significantly affect CA release from V. natans and P. Stratiotes. In general, under Cu2+ stress, V. natans secreted far more CA than under Mn2+ stress, the level could reach up to 435.303 µg/L. However, compared to V. natans, P. Stratiotes was less affected by Cu2+ and Mn2+ stress, releasing a maximum CA content of 55.582 µg/L under 5 mg/L Mn2+ stress. Aquatic macrophytes secreted more CA in response to heavy metal stresses and protected macrophytes from harmful heavy metals. CA degradation followed the pseudo first-order kinetics model, and the chlorination of CA conformed to a second-order reaction. The reaction rate significantly accelerated as NaClO, pH, temperature and Br- concentration increased. A new pathway for CA degradation and a new DBP 2, 2, 3, 3-tetrachloropropanal were observed. These findings pointed at a new direction into the adverse effect of CA, potentially paving the way for new strategies to solve drinking water safety problems.


Assuntos
Araceae , Ácidos Cafeicos , Água Potável , Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Poluentes Químicos da Água/análise , Halogenação , Araceae/metabolismo , Metais Pesados/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...